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We propose a different photonic crystal structure with a novel defect mode. In this defect mode, the
transmitted angle is sharp and the pass band is of rectangular shape. Surprisingly, there is a critical refractive
index of the defect layer in the crystal. By changing the refractive index in a range higher than this critical
value, the sharp transmitted angle can be tuned with transmitted frequency range maintained; when the refrac-
tive index is lower than this critical value, only the transmittance of the defect mode is adjusted, with the sharp
transmitted angle and transmitted frequency kept unchanged. All these phenomena provide possible mecha-
nisms for angular filtering, optical switchingsi.e., an optical switch working in the angular domaind and setting
optical limits.
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I. INTRODUCTION

Photonic crystalssPCsd have attracted extensive studies
since the initial prediction of Yablonovitchf1g and Johnf2g.
Based on one-dimensionals1Dd PCs consisting of positive
index materialssPIMsd with both positive permittivity and
permeability, some important applications for omnidirec-
tional filtering are proposed, such as omnidirectional reflec-
tion band sORBd f3g and narrow frequency sharp angular
defect modef4g. Recently, negative index materialssNIMsd
with simultaneous negative permittivity and permeability,
which were suggested by Veselagof5g, have also received a
great deal of attention. Some properties of 1D PCs with NIM
inclusion are revealed, for instance, omnidirectional band
gap coming from the zero-n̄ mechanismf6g and very weak
dependence of the defect mode on incident anglesf7g. NIM
has also been used to broaden the stop band of a 1D PC, in
the case of normal propagationf8g, and used as a defect layer
in a defective PC with periodic structures consisting all of
PIMs to obtain a flat-top transmission band at normal inci-
dencef9g. In theory, the conditions for this flat-top band to
appear should be extended to different types of defective
PCs, e.g., the periodic structures are alternately consisted of
NIM and PIM, or all NIMs. Moreover, for a flat-top defect
mode obtained by coupling two or more defective PCs con-
sisting all of PIMs, the defect-mode frequency varies for
different incident angles. This means that light with an un-
wanted frequency might be transmitted through the filter,
which would inevitably reduce the advantages of the filter.
Hence, a flat-top pass band is needed for filtering not only in
the frequency domain but also in the angular domainsi.e., it
should emerge only within a sharp angular ranged. Such a
defect mode will have further application for angular optical
switching, if it can be tuned to appear at different incident
angles with an invariant transmitted frequency range within
an ORB, and for optical limiting, if the transmittance can be
tuned with an invariant transmission angle.

In this paper, we extend the defect-mode resonant condi-
tion of the one-dimensional defective PC to several types of
structures with periodic quarter-wave stacks consisted all of
NIMs or alternately of NIM and PIM, and deduce the phase
changes on reflection from such reflective stacks. Then the
conditions for a flat-top defect mode appearing in the normal
band gap of these different types of defective PCs are ob-
tained. Based on these theories, we proposed a photonic het-
erostructure possessing a sharp angular and flat-top pass
band, in which a flat-top pass band responses only for a
sharp angular range within an ORB. The optical response of
this heterostructure as a function of the refractive index of
the defect layer is also analyzed, and the results provide pos-
sible mechanisms for angular optical switchingsi.e., an op-
tical switch working in the angular domaind and setting op-
tical limits.

II. DEFECT-MODE RESONANT CONDITION FOR
DEFECTIVE PCS CONTAINING NIMS

As discussed by Macleodf10g, a defective PC may be
completely described by the defect layer and two effective
interfacesM1 andM2. If we considerM1 with the reflective
stack to the left of it as system I, andM2 with the stack to the
right as system II, then the transmittance of the PC is given
by

Tsnd =
T1sndT2snd

f1 −ÎR1sndR2sndg2 + 4ÎR1sndR2sndsin2s 1
2ud

, s1d

where T1,T2,R1, and R2 are the transmittances and reflec-
tances of systems I and II, respectively. For normal inci-
dence, the transmittanceTsnd reaches a maximum when the
defect mode resonant condition

usnd = − f1snd − f2snd + 2Osnd = 2mp s2d

is satisfied. Herem is an integer,f1snd and f2snd are the
phase changes on reflection from system I and II, andOsnd is
the phase thickness of the defect layer. The precondition used*Email address: stswhz@zsu.edu.cn
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by Macleod is that systems I and II are all consisting of
PIMs, and because the phase change suffered by the wave on
traversing a distanced in a PIM without absorption isdsnd
=−2pnnPIMd f10g, then he derived the amplitude of reflec-
tancer1,2snd= ur1,2sndueif1,2snd, and, consequently, minus signs
are applied to the first two terms in the middle of Eq.s2d.

Now we extend this defect mode resonant condition at
normal incidence for defective PCs with quarter-wave reflec-
tive stacks consisting of alternate PIM and NIM layers or
consisted all by NIM layers. We assume every layer is of the
same quarter-wave optical thickness.

We first consider the quarter-wave stacks consisting of
alternate PIM and NIM layers to be effective PIM stacks or
effective NIM stacks at normal incidence. This is because
quarter-wave stacks consisting of alternate PIM and NIM
layers are just like series phase compensatorsf11,12g: what-
ever phase difference is developed by traversing the PIM
layer, it can be canceled by traversing the NIM layer with the
same absolute optical thickness as the PIM layer, since the
directions of phase velocity in PIM and NIM are opposite.
Hence, only the layer conjugated to the defect contributes to
the phase change on reflection. According to this, the types
of PCssNPds2DsPNds and sP1P2ds2DsP2P1ds have effective
PIM stacks, whereassPNds2DsNPds and sN1N2ds2DsN2N1ds

have effective NIM stacks. HereP is for PIM, N for NIM,
andD for the defect layer, and the different subscripts are for
different materials. For NIM,dsnd=2pnunNIM ud, which has
the opposite sign to that for PIM, so for effective NIM
stacks, we have

r1,2snd = ur1,2sndue−if1,2snd, s3d

different from Macleod, and hence the defect mode resonant
condition becomes

usnd = f1snd + f2snd + 2Osnd = 2mp. s4d

Combining Eqs.s2d and s4d, we have the defect mode reso-
nant condition for defective PCs with effective PIM or NIM
stacks as follows:

usnd = ± f1snd ± f2snd + 2Osnd = 2mp, s5d

where the − is for defective PCs with effective PIM stacks
and the + is for those with effective NIM stacks. For a sym-
metrical defective PC,f1snd=f2snd;fsnd.

III. PHASE CHANGE ON REFLECTION

We now deduce the phase change on reflectionf from
quarter-wave multilayers. The matrix of a quarter-wave layer
without absorption can be simplifiedf13g to

F A ± j /Ql

± jQl A
G s6d

at normal incidence for frequenciesn close to n0 scorre-
sponding to the character wavelengthl0 of the quarter-wave
layerd, whereA= 1

2sinfpsn /n0dg, and + is forl =P and the − is
for l =N, respectively.Ql is the reciprocal of wave impedance
defined asQl =nl /ml, wherenl is the refractive index andml
is the relative permeability of the layer.

The product

M = Fm11 m12

m21 m22
G s7d

of the impedance matrices of the individual layers can be
evaluated using the simplified form in Eq.s6d and eliminat-
ing higher-order terms in sinfpsn /n0dg for eight types of
quarter-wave stacks listed in the first two columns of Table I.
Results ofM are listed in the third column, where it is as-
sumed thatQ=sQl

H /Ql
Ld.1.5 is used, and the layer withQl

H

is of higher reciprocal of wave impedance than that withQl
L.

Seeleyf13g has shown that in the limitQ.1.5, tanf attains
limiting values

tanflim = k sinSp
n

n0
D , s8d

wherek is a parameter. For situationsid that light from the
defect layer incident toQl

H,

TABLE I. The productM of individual layers of different types of quarter-wave stacks and the flat-top
conditions for different types of defective PCs.

Types of quarter-wave stacks M Types of defective PCs

Flat-top conditons

QD D

QP.QN sPNds f Q−s j A
QN

oy=−s
s−1 s−Qdy

−jAQPoy=−s
s−1 s−Qdy Qs g sNPds2DsPNds QP+QN NIM

QP,QN sNPds sPNds2DsNPds PIM

QP,QN sPNds f Qs j A
QN

oy=−s
s−1 s−Qdy

−jAQPoy=−s
s−1 s−Qdy Q−s g sNPds2DsPNds QPQN

QP+QN

NIM

QP.QN sNPds sPNds2DsNPds PIM

Ql1
.Ql2

sl =P or Nd sN1N2ds f Q−s j A
Ql2

oy=−s
s−1 Qy

jAQl1
oy=−s

s−1 Qy Qs g sN2N1ds2DsN1N2ds QN1
−QN2

PIM

sP1P2ds sP2P1ds2DsP1P2ds QP1
−QP2

NIM

sN2N1ds f Qs j A
Ql2

oy=−s
s−1 Qy

jAQl1
oy=−s

s−1 Qy Q−s g sN1N2ds2DsN2N1ds QN1
QN2

QN1
−QN2

PIM

sP2P1ds sP1P2ds2DsP2P1ds QP1
QP2

QP1
−QP2

NIM
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tanflim = 2QDm12/m22, s9d

and for situationsii d that incident toQl
L,

tanflim = 2m21/m11QD. s10d

Then combining productM in Table I and Eqs.s8d–s10d, we
get the expressions of parameterk as follows:

kA =
QD

Ql
H ± Ql

L , for situationsid, s11d

and

kB =
Ql

HQl
L

QDsQl
H ± Ql

Ld
, for situationsii d, s12d

where + for stacks consisting alternately of PIM and NIM
layers, and the − for all those consisting of PIM or NIM
layers. Then, the phase change on reflection as a function of
n for frequencies close ton0 at normal incidence isf14g

f jsnd = − kjpSn − n0

n0
D, j = A,B. s13d

IV. TUNABLE SHARP ANGULAR AND FLAT-TOP
DEFECT MODE

From Eqs.s5d and s13d, one finds that the two terms on
the phase change on reflection are monotonously increasing
or decreasing whenn changes aroundn0. If the phase thick-
ness of the defect layer can compensate such difference of
phase change on reflection, the transmittance of the spectrum
will be a flat-top pass band centering atn0. This can be done
by inserting a PIM or NIM defect with proper indices, re-
spectively, according to the reflective stacks: PIM defect for
effective NIM stacks and NIM defect for effective PIM
stacks. We call this “the flat-top condition,” as shown in
columns 5 and 6 of Table I.

Take sPNd52DsNPd5 for example to illustrate this idea.
Let light from the defect layer incident to a layer withQl

H

=QN.QP, then f jsnd=fAsnd=−kApfsn−n0d /n0g, and kA

=QD / sQP+QNd. Since it has effective NIM stacks at normal
incidence, one should use a PIM defect for phase-difference
compensation. Letm=1, then Eq.s4d can be solved under the
flat-top condition with a result thatQD=QP+QN, and the
transmission spectrum is shown in Fig. 1sad, in which we let
mP=mD=−mN=1, nP=1.45, nN=−2.9, and accordingly, we
get nD=4.35 for the flat-top condition. For another example
sP1P2d52DsP2P1d5, light from the defect layer incident to a
layer with Ql

L=QP2
,QP1

, then f jsnd=fBsnd=−kBpfsn
−n0/n0g, and kB=QP1

QP2
/ fQDsQP1

−QP2
dg. Since it has ef-

fective PIM stacks, one should use a NIM defect for phase-
difference compensation. Letm=1, then Eq. s2d can be
solved with a result thatQD=QP1

QP2
/ sQP1

−QP2
d, and the

transmission spectrum is shown in Fig. 1sbd, in which we let
mP1

=mP2
=−mD=1, nP1

=2nP2
=2.9, and, accordingly, we get

nD=−2.9. The transmission versus incident angles and nor-
malized frequencies is calculated by a matrix methodf15g.

Figure 1 shows that, at normal incidence, a flat-top pass
band emerges in the normal band gap symmetrically ton0.

As incident angle increases, the transmittance of this pass
band decreases dramatically, while a resonant peak appears
at the high-frequency end of this pass band and shifts to
higher frequency. Transmission spectrum such as these im-
plies that a sharp angular defect mode transmitting lights
only within a narrow angular range can be achieved, as long
as the propagation bands of oblique incidences are forbidden
and the normal pass band is reserved simultaneously. To ful-
fill such requirements, we suggest defective structures dis-
cussed abovesdenoted byAd be coupled with a short wave
pass filtersLd or a long wave pass filtersRd or both, accord-
ing to the transmission spectrum ofA. This is because the
transmission spectrum as functions both of incident angles
and frequencies varies for PCs consisting of different mate-
rials, then one must investigate the transmission spectrum of
A to determine what kinds of filter it should be coupled with.

As an example, we use the defective PC in Fig. 1sbd asA
to construct the heterostructure possessing sharp angular pass
band, and we still use the PIMs in this structure to constitute
optimized structures ofL andR as follows:

L = 1.26f1.065fsP2/2dP1sP2/2dg2fsP2/2dP1sP2/2dg8

31.065fsP2/2dP1sP2/2dg2g,
and

R= 0.747f0.98fsP1/2dP2sP1/2dg2fsP1/2dP2sP1/2dg8g.
Among structuresA,L, andR, the forbidden bands compen-
sate for each other while a pass-band intersection centering
at n0 and normal exists. If we couple these three structures
together to form a heterostructure, denoted byLAR, it can be
expected that an ORB will form and a flat-top pass band
existing only within a sharp incident angular range will
emerge in this ORB. We prove this idea in Fig. 2sad. It can be
seen that the range of ORB iss0.85, 1.2dn0. Only light
within the frequency range ofs0.94,1.07dn0 and the angular
range 0° ±3° can be transmitted.

FIG. 1. sColor onlined Transmission vs incident angles and nor-
malized frequencies for structures:sad sPNd52DsNPd5, with mP

=mD=−mN=1, nP=1.45, nN=−2.9, and nD=4.35; sbd
sP1P2d52DsP2P1d5, with mP1

=mP2
=−mD=1, nP1

=2nP2
=2.9, and

nD=−2.9. Parameters in bothsad and sbd satisfy the flat-top condi-
tion, hence, a flat-top pass band emerges in the normal band gap.

TUNABLE SHARP ANGULAR DEFECT MODE WITH… PHYSICAL REVIEW E 71, 066610s2005d

066610-3



From the above simulation, one will note that the pass
band ofLAR is mainly determined by the pass band ofA. L
andR are just used to forbid the propagation bands ofA at
oblique incidence. Furthermore, around the defect-mode
resonant condition in Eq.s5d, the transmittanceT of A is very
sensitive to the phase thicknessO of its defect layer. This is
because from Eqs.s1d and s5d, one can get

]T

]O
= −

4ÎR1R2sinu

fs1 −ÎR1R2d2 + 4ÎR1R2sin2s 1
2udg2 . s14d

On one hand, one can choose proper indices of the defect
layer to compensate the difference of phase changes on re-
flection around the central frequency to fulfill the resonant
condition and get a flat-top pass band. On the other hand,
according to Eq.s14d, around the resonant conditionu
=2mp, T will be dramatically changed as a function ofO. So
it is interesting to investigate the variation of the transmis-
sion spectrum ofLARas a function of the refractive index of
the defect layer inA. In the following, we will get results by

analyzing the defect mode resonant condition and show ex-
amples by numerical simulation.

When the optical thickness of the defect layer is a little
greater than that satisfying the flat-top condition of normal
incidence, the transmission angle of the flat-top pass band
shifts from the normal to an oblique one, with invariant
transmitted frequency range. This is because the phase
change on reflection at a small incident angle will become a
little less than that at normal incidence. Increasing the optical
thickness of the defect layer will compensate this difference
of phase change, so that the flat-top condition will be satis-
fied at an oblique angle. Hence, the flat-top pass band will
shift to a small incident angle, while the frequency range
remains unchanged. Examples are shown in Fig. 2, where
only the refractive index of the defect layer is changed and
the geometry thickness of the defect layer is unchanged, i.e.,
dD;0.25l0/2.9. Figure 2sad shows the transmittance for
LAR with nD=−2.9. Figure 2sbd shows the transmittance for
LAR with nD=−2.899, with transmitted angular range from
1.5° to 4.3° for transmittance over 50%, and the central angle
is 3.0°. WhennD=−2.897 and −2.894, the central angle
shifts to 5.3° and 7.5°, as shown in Figs. 2scd and 2sdd, re-

FIG. 3. sColor onlined Transmittance vs incident angles and nor-
malized frequencies of structureLAR with nD equals:sad −2.900,
sbd −2.9005,scd −2.901, andsdd −2.903. Transmittance of the flat-
top defect mode decreases with invariant transmission angle. This
phenomenon provides a possible mechanism for optical limiting.

FIG. 2. sColor onlined Transmittance vs incident angles and nor-
malized frequencies of structureLAR with nD equals:sad −2.900,
sbd −2.899,scd −2.897, andsdd −2.894. Transmission of the flat-top
defect mode shifts to an oblique incident angle with invariant trans-
mitted frequency range and maintained high transmittance. This
phenomenon provides a possible mechanism for angular optical
switching.
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spectively. For this variation, the transmitted angular range is
tunable with invariant transmitted frequency range. This phe-
nomenon provides a possible mechanism for angular optical
switching si.e., an optical switch working in the angular do-
maind.

When the optical thickness of the defect layer is a little
less than that satisfying the flat-top condition of normal in-
cidence, the transmittance of the whole pass band decreases,
while the transmission angle remains to be 0°. This is be-
cause the defect-mode resonant condition cannot be fulfilled
at any incident angle in the frequency range close ton0. An
example is shown in Fig. 3, where also only the refractive
index of the defect layer is changed and the thickness of the
defect layer is unchanged. Figure 3sad shows the transmit-
tance for structureLAR with nD=−2.9 as that in Fig. 2sad.
When nD=−2.9005, −2.901, and −2.903, the average trans-
mittance decreases to about 60, 30, and 5 %, respectively,
with the invariant transmitted frequency range, as shown in
Figs. 3sbd–3sdd. This phenomenon provides a possible
mechanism for optical limiting.

The sharp angular and flat-top defect-mode characteristics
discussed above exist commonly in the defective PCs whose
material indices satisfy the flat-top conditionsi.e., a critical
refractive index of the defect layerd. By changing the refrac-
tive index in a range higher than this critical value, theLAR
structure acts as an angular optical switch; as the refractive
index is lower than this critical value, it becomes an optical
limiter.

In the above we have discussed only the ideal situations in
which the structure consists of lossless and nondispersive
materials. In a nonideal situation, these unusual characteris-
tics can also be expected to occur when the band structure is
scalablef16g, and we can scale it to a frequency range in
which the material parameters have a very weak dispersion
and the realization of lossless negative index material ap-

pears to be quite possiblef17g in wide frequency bands with
the use of active inclusions.

V. CONCLUSION

In conclusion, we extend the defect-mode resonant condi-
tion of the 1D defective PC for several types of structures
with periodic quarter-wave stacks consisting alternately of
NIM and PIM or by all NIMs, and deduce the phase changes
on reflection from such reflective stacks. Then the conditions
for a flat-top defect mode to appear in the normal band gap
of such different types of defective PCs are obtained. Fur-
thermore, we proposed a photonic heterostructure possessing
a sharp angular and flat-top defect mode, in which a flat-top
pass band responses only for a sharp angular range within an
ORB. When the refractive index of the defect layer is a little
greater than that for the flat-top defect mode appearing at
normal incidence, transmission of this flat-top defect mode
shifts to an oblique incident angle with an invariant transmit-
ted frequency range and maintained high transmittance.
When the refractive index of the defect layer is a little less
than that for the flat-top defect mode appearing at normal
incidence, the transmittance of this flat-top defect mode de-
creases with invariant transmission angle. All these phenom-
ena provide possible mechanisms for sharp angular and flat-
top filtering, angular optical switching, and optical limiting.
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